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Abstract 

Formulas are presented for the calculation of the 
cosines of n-tet phase invariants and embedded semin- 
variants in all the space groups. They are shown to be 
of the form of a particular type of expected value 
formula that is derivable from the joint probability 
distribution. In the recent literature, formulas for phase 
invariants and seminvariants have been given in the 
form of conditional probability distributions. A detailed 
comparison of the relative merits of the two types of 
formulas, expected value and conditional distribution, 
has not yet been made. The variety of potential 
applications is quite vast and therefore it may require 
much effort to make evaluations of current theories. 
Should it seem worthwhile, the determinantal joint 
probability distributions employed in this paper could 
provide the basis for the derivation of additional 
conditional probability distributions. They are likely to 
be much more complex, however, than the expected 
value formulas. Some simple calculations with triplet 
and quartet invariants involving random structures in 
space group P1 show a considerable decrease in the 
reliability of the expected value formulas as the 
complexity of the structure increases. A comparable 
observation had been made in the past for conditional 
probability distributions for triplet phase invariants. 
Current theories present the possibility of obtaining 
information in special circumstances, for example, with 
respect to selected embedded seminvariants. How 
extensive and how useful such information might be, 
particularly with respect to the truly difficult structures 
that occur among the essentially equal-atom, non- 
centrosymmetric crystals with 100 or more nonhydro- 
gen atoms in the asymmetric unit, remains to be seen. 

Introduction 

In an effort to improve procedures for phase determi- 
nation, the mathematics of the joint probability distri- 
bution has been used to investigate the higher-order 
phase invariants, linear combinations of phases whose 
subscripts add up to zero. This interest in the 
higher-order phase invariants is understandable in view 
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of the dramatic advances in structure determination 
that have accrued over the past thirty years from use of 
the mathematical properties of the third order, or 
triplet, phase invariant, ~0h, + tPh2 + tph,, where h I + h E + 
h a = 0. Early in the development of phase determining 
formulas it was recognized that the higher-order phase 
invariants might be helpful in phase determination. For 
example, the special quartet formula, ~]a (Hauptman & 
Karle, 1953) was found to be useful in several early 
structural studies and was used extensively in the initial 
stages of the determination of the structure of p,p'- 
dimethoxybenzophenone (Karle, Hauptman, Karle & 
Wing, 1958). 

Because of the tedious nature of the derivations, only 
a limited number of conditional probability distri- 
butions for individual higher-order invariants have so 
far been obtained. Associated with derivations of the 
joint probability distributions is 'neighborhood' theory 
(Hauptman, 1977a,b) or 'representation' theory 
(Giacovazzo, 1977, 1980a). These theories concern the 
types of structure factors to be combined in the joint 
distributions in order to achieve the desired conditional 
probability formulas for n-tet phase invariants and 
embedded seminvariants. Numerous individual appli- 
cations of probability theory are required to derive new 
formulas of interest in the many space groups. 

A mathematical approach that provides general 
formulas for computing the values of n-tet invariants 
and embedded seminvariants in all the space groups 
involves a type of expected value formula that will be 
the concern of this paper. The expected value formulas 
are, in the first instance, suggested by insights that 
derive from earlier experiences. They have also been 
obtained from determinantal joint probability distri- 
butions (Karle, 1982a,b). These formulas obviate the 
necessity for developing a separate neighborhood or 
representation theory since the importantly related 
structure factors are already contained within them. 
Methods for using the new formulas and some 
illustrative calculations will be presented. 

Phase invariant formulas 

The formulas for the computation of n-tet invariants 
and embedded seminvariants are of two kinds which 
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are termed here 'special phase invariant formulas' and 
'general phase invariant formulas'. They are defined as 
follows: 

Spec ia l  n-tet  invar ian t  f o r m u l a s  
cos (q~, + ~2 + "'" + ~ , )  

'~ ((iEh 12- 1) (IEh,+hsl 2- 1).. .  

X (IEh,+h s . . . . .  h, 1 2 -  1))i4 ..... v 

x (S,(  I Num. I ),,j ..... ~)-', (1) 

where ha + h z + . . .  + h n = 0, n = 4, 5, 6, . . . ;  i , j , . . . ,  
v = 1, . . . ,  n except that no two of the subscripts can 
have the same integer value and the number of sub- 
scripts i, j . . . . .  v is n = 1. If the nth subscript is w, then 
because of the relationship among the indices, h, we 
have h e + hj + . . .  + h v = - h  w. Duplication in com- 
puting the average terms over i , j , . . . ,  v in (1) is avoided 
by imposition of the rule i < w. The ~Ph are phases of 
index h, the E are normalized structure factors, S is a 
scaling function that can be a constant equal to unity 
and (INum. I) means the average of the absolute values 
of the terms entering the average function in the 
numerator. 

General  n-tet  phase  invar ian t  f o r m u l a s  

cos (¢'h, + ¢h~ + " "  + ~ . )  
~--- <([Ek ]2- I) ([Eh,+k[ 2- 1) ([Eh,+h,+k[ 2- I)... 

X (IEh,+h~ ..... k+k 12- l))k.U ..... v 

x (Sk,,(INum.I > k d , j  ..... v) -1 (2) 

The elements of (2) are the same as those of (1) except 
for the extra factor (IEkl 2 -- 1) and the occurrence of 
the vector k in the index definitions of the various E. In 
addition, the integer values of n start with 3 instead of 
4. The average may be taken over selected values for k 
as well as the i , j  . . . .  , v. It is seen that (2) reduces to (1) 
if k -- (0,0,0). For a given k ~ (0,0,0), there is no 
duplication of terms in taking the average over all 
possible combinations of values for the i , j  . . . . .  v. 

Rationale  

In this part, the origins of formulas (1) and (2) are 
outlined as an extrapolation and formal extension of 
earlier results. 

We recall the formulas, 

tEhl z -  1 --, Gz(IEk 12- 1)([Eh+k 1 2 -  1)) k (3) 
and 
[Eh, Eh2 Eh31 COS ((Ph, + (Ph2 + ¢ht3) 

~_ G3((IEkl z- I) (IEh,+kl 2- 1) (IEh,+h,+kl z- 1))k,,4, 

(4) 

whereh  1 + h 2+ h 3 = 0 a n d i , j =  1, 2, 3; i : / : j .  In (4), 
for a specific k, the average is taken over the permitted 
combinations of i and j. If k varies over all possible 
values, taking the average over i and j yields only 
duplication, so that one selection of values for i and j 
suffices. Formulas (3) and (4) have been derived by 
algebraic and probability methods. Scaled versions of 
(3) and (4) that exhibit forms for the scaling functions 
G 2 (Hauptman, 1964; Karle, 1966) and G a (Karle, 
1970) have been published. Inspection of (3) and (4) 
suggests  an extrapolation to obtain the quartet formula 

I Eh, Eh 2 Eh3 Eh, I COS ((Oh, + (Ph2 + (Ph3 + (Oh,) 

G4((IEkl 2 -  1)(IEh,+kl 2 -  1) (IEh,+hs+k 1 2 -  1) 

X (IEh,+hs+h,+k 1 2 -  1))k, id, k, (5) 

where h 1 + h 2 + h 3 + h 4 = 0; i , j ,  k = 1, 2, 3, 4 
except that i, j and k must assume different integer 
values, i.e. i =/= j ,  k ;  j =/= k. It is quite apparent how the 
extrapolation demonstrated by (5) may be extended 
further to define n-tets of higher and higher order. 
Except for an alternative manner for presenting the 
scaling, the extrapolation generates the general for- 
mulas given by (2). 

As indicated above, the special formulas (1) may be 
obtained from the general ones by setting k -- (0,0,0). 
From the manner in which general formulas are derived 
from the joint probability distribution, it is not proper to 
set k - (0,0,0). Use of the latter setting is, however, an 
example of a formalism that can be useful despite its 
lack of rigor. Additional support for formulas (1)and 
also (2) derives from showing that both the specialand 
general formulas can arise from appropriately formed 
determinantal joint probability distributions (Karle, 
1982a,b).  

C o m p u t a t i o n  o f  formulas  (1) and (2) 

For the derivations of the theoretical results, formulas 
(1) and (2), the type of atomic arrangement that is most 
appropriate is a random one. Experience has shown 
that such formulas are also applicable to crystals in 
which there are regularly ordered arrangements of 
atoms despite the random basis for the derivation. In 
particular, crystals that have some structure factors of 
unusually large magnitude because of special regu- 
larities are generally particularly suited for obtaining 
information from (1) and (2). Calculations show and 
the probability theory indicates that the most reliable 
computations of the invariants are those that are 
associated with the largest products of I EI corre- 
sponding to the phases forming the invariants. The 
values of the invariants that are computed most reliably 
are those close to zero. At times it is also possible to 
accept some calculations that indicate that the value of 
the invariant is close to n. Relatively fewer invariants 
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will be computed reliably, however, as the number of 
atoms in the unit cell increases. This is consistent with 
observations made from computations of the values of 
invariants from conditional joint probability distri- 
butions. 

In the next part, calculations will be discussed and 
illustrations of the manner for calculating formulas (1) 
and (2) for various types of invariants will be presented. 

Triplet invariants 

The general formula (2) for the triplet invariant is 
comparable to a scaled version of the B3, 0 formula 
(Karle, 1970), which can be used to screen out triplets 
whose values deviate significantly from zero. Appli- 
cations of this method are described by Karle, Gibson 
& Karle (1970) and Flippen (1972). This type of 
formula rapidly deteriorates in its reliability as the 
complexity of a structure increases. This is also true for 
the corresponding conditional probability distribution 
(Karle, 1980). 

The test of this formula was an ideal one in which 
data were calculated for random structures in space 
group P1 for 20, 50, 100 and 200 atom structures. The 
number of independent data computed in each case, as 
seen in Table 1, corresponded approximately to the 
amount in a Cu sphere of reflection, except in the 
second example, for which calculations were based on 
four times the Cu sphere of data. Formula (2) for the 
triplel?'invariant was computed by setting the scaling 
fact0i', I Sk,3, equal to unity and allowing k to range 
through the complete data set including Friedel mates. 
Undei" this circumstance any one selection of values for 
i and j suffices. Additional selections merely produce a 
duplication of terms contributing to the averages of (2). 
In addition, terms were accepted for the average only if 
at least two of the three factors in a term were formed 
from I EI values that exceeded the value of b given in 
the third column of Table 1. In all cases 150 triplet 
invariants were computed, ones with the largest values 
for IEh. Eh, Eh31. Column 5 shows how many of the 150 
triplets were computed by formula (2) to have values 
equal to or exceeding the value in column 4. Negative 
terms of large magnitude were not considered since 
they have already been shown to be unreliable (Karle, 
1970). The three lowest values for the cosines of the 
triplet invariants included in the sets defined by column 
4 are given in column 6. In examining columns 5 and 6, 
it is seen that, although a Cu sphere of data is 
maintained for the calculations, the amount of reliable 
information decreases dramatically with complexity. 
Comparison of the second example with the first shows 
the benefit that derived from having much more data 
than can normally be measured. As noted above, 
experience with the conditional probability distribution 
(Karle, 1980) has shown that this alternative prob- 
abilistic form does not overcome the problem of 

deteriorating reliability with complexity shown by 
formula (2). 

The question arises concerning whether the triplet 
form of formula (2) should ever be considered if the unit 
cell contains approximately 100 or more atoms in the 
unit cell. The answer is that this formula may provide 
useful information in some circumstances when there 
are subsets of the data that have unusually large 
normalized structure factor magnitudes. It will also be 
noted later on that worthwhile information may be 
obtained for phase seminvariants on occasion, parti- 
cularly when use can be made of embeddings. Al- 
though calculations of this sort have been made as long 
as twenty years ago, there is a lack of broad experience 
on which to draw conclusions. 

Quartet invariants 

Calculations of a sampling of quartet invariants were 
also made from the same data sets that were employed 
for the triplet invariants. Before discussing the details of 
the calculations, some remarks concerning the calcu- 
lation of formulas (1) and (2) for quartet invariants are 
appropriate. In general, the number of contributing 
terms to the averages in (1) is n!, where n is the order of 
the n-tet. In this case, we have 24 terms. There is, 
however, a duplication of terms, so that there are 12 
distinct ones. The latter are obtained by including only 
terms in the averages of (1) that satisfy i < l, where I is 
defined by h i + hj + h k = --h t. 

Table 1. Calculations of the cosines of triplet phase 
invariants 

Results of  calculations of  formula (2) (with Sk.3 = 1) for triplet 
invariants for random structures of  increasing complexity in space 
group P1. In each case, 150 invariants associated with the largest 
values for IEh, Eh, Eh,I, where h I + h 2 + h 3 = 0, were computed.  
The values for b in column 3 signify the minimum value for two of  
the three factors in each term in the averages of  formula (2). 
The calculations show a decrease in acceptability with an increase 
in the complexity of  the structures. 

Number 
Number Minimum of Three lowest 

Number of value calculations values 
of independent accepted above the for cosine 

atoms data b for (2) minimum of triplet 

20 1182 1.4 0.50 50 0.72.0.74.0.75 
0.40 70 0.59.0.61.0.70 
0.30 86 0.59.0,61.0.70 

20 4850 1.8 0.50 119 0.67, 0.74.0.76 
0.40 140 0.67, 0.74.0.76 

50 3609 1.6 0.50 26 0.59.0.70.0.71 
0.45 36 -0.16.0.59.0,70 
0.40 48 -0.16.0.59.0,70 

100 8124 I-8 0.40 27 0.26.0.58.0.81 
0.35 31 0.26.0.58.0.67 
0.30 34 0.21.0.26.0.58 

200 15375 1.8 0.40 5 0.81.0.88.0.92 
0.35 13 -0.92.0-78.0-81 
0.30 15 -0.92.0.65.0.78 
0.25 20 -0.92.0.32.0.65 
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For  each k in formula  (2), there are in general n I 
distinct contributing terms to the averages. In the 
computa t ions  of  (2), k is permitted to range through the 
complete data set including Friedel mates. Under  this 
circumstance,  there are only three distinct sets of  values 
for i, j and k. The subscripts for the four factors in (2) 
may  be selected as follows: 

k h 1 + k hi + h2 + k h~ + h 2 + h a + k 

k h ~ + k  h t + h  2 + k  h l + h  2 + h  4 + k  

k h I + k h~ + h 3 + k h I + h 2 + h 3 + k. 

(6) 

It  is found that  enhanced reliability is obtained when 
computing a quartet  invariant  from (2) if it is required 
that  at least three of  the four factors in the terms 
contr ibuting to the average be large. Instead of  
specifying a part icular lower limit for the three factors, 
the averages are taken at three different limits, i.e. 1.4, 
1.6 and 1.8 for the lowest values of  three of  the I EI 
occurr ing among the four factors forming the terms in 
(2) for the case of quartet  invariants.  The limits 1.4, 1.6 
and 1.8 are called the I EI limits. At  each of the three 
limits, there will be three different averages given by (6). 
One of  the criteria for the acceptabili ty of the 
calculat ion is the internal consistency of  the three 
averages at each of the three limits. An optimal 
c i rcumstance occurs when all nine averages are large 
and in agreement. When contradic tory  signs are 
obtained for some of the averages, the calculation is 
rejected. 

Results of  computat ions  of  formula (2) for small 
samplings of  the quartet  invariants  are shown in Table 
2 (Sk,4 is set equal to 1). The data  sets are the same 
as those used for the triplet phase invariants. As seen in 

columns 3, 5 and 7, the samplings cover a range of  
known values for the cosine of  the quartet  represented 
by cos q~. The number  of  calculations accepted is given 
in columns 4, 6 and 8. Except for the calculation 
represented by the entry in column 4 for the 100 atom 
case, none of  the accepted calculations reversed the true 
sign of  the invariant.  Evidently, to avoid the error in the 
100 atom case, more stringent acceptance criteria 
would be required. 

The acceptance criteria applied here are that  there 
must  be no contradict ions among the calculations 
described by (6), computed at the three different I EI  
limits of  1.4, 1.6 and 1.8, and, in addition, an 
acceptance limit must be satisfied, namely the magni- 
tudes of  the results of  the calculations of (2) at the I EI 
limits of  1.4, 1.6 and 1.8 are required to equal or 
exceed the acceptance limit. Such limiting values are 
specified in column 9 of  Table 2 and have been selected 
here for illustrative purposes. Some of  them may very 
well not be safe, part icularly values as low as 0-30. 
Therefore, in some of  the cases, higher values may be 
required to ensure that  errors in selection would be 
avoided. Experience should facilitate the establishment 
of  reliable acceptance limits. 

Table 2 indicates that  the general formula (2) applied 
to quartet  invariants  for structures having random 
arrangements  of  atoms gives a rapidly decreasing 
amount  of  information as the complexity of  the 
structures increases. This is comparable  to the results 
for triplet invariants  given in Table 1. In all cases except 
that  given by the second row in Table 2, the quartet  
invariants were samples from those associated with the 
largest values for I Eh, Eh2 Eh, Eh, I, where h~ + h 2 + h 3 + 
h4 = 0. The quartets computed for the second row of  

Table 2. Calculations of  the cosines of quartet phase invariants 

Results of calculations of formula (2) (with Sk ,  4 = 1) for quartet invariants for the same random structures as used for the calculations in 
Table 1. In each case, except for the second row, the quartet invariants computed were among those that had the largest values for 
IEh, Eh2 Eh, Eh,, where h~ + h 2 + h 3 + h 4 = 0. The calculations were performed at three different minimum values of three of the four factors 
in each term in the averages of formula (2), i.e. three of the IEI in the factors had to exceed 1.8 or 1.6 or 1.4. Acceptances were based 
on the internal consistency of the calculations and their equaling or exceeding in value the acceptance limit in column 9. As in Table 1, the 
calculations show a decrease in acceptability with an increase in the complexity of the structures. 

Number of 
Number Number of Number quartets Number Number of Number 

Number of quartets from computed from quartets from 
of independent computed column 3 (-0.40 < column 5 computed column 7 Acceptance 

atoms data (cos tp > 0.70) accepted cos • < 0.40) accepted (cos tp > -0.65) accepted limit 

20 1182 12 12 4 1" 4 1 0-70 
20t 4850 8 4 9 6 0.40 
50 3609 15 2 2 0 2 0 0.60 

100 8124 14 1~- 7 0 1 0 0.50 
200 15375 16 0 5 0 2 0 0-30 

* Accepted as if it were a large negative value (actual value -0.33). 
t Direct comparison with the first row is not appropriate since quartets with much smaller values for IEh~ Eh2 Eh, Eh, I were computed 

here. 
:1: Incorrect, since strong negative value indicated. 
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Table 2 had, on the average, much lower values for the 
products of the four I EI than the quartets computed for 
the first row. Despite the fact that the acceptance limit 
was lowered (except for row 2) as the complexity of the 
structure increased, it is clearly seen from Table 2 that 
the number of acceptances decreased greatly. The 
number of reliable values for the quartets that could be 
computed has not been determined. That would require 
a rather extensive computation. Also undetermined is 
how the number of reliable values might vary when 
data for actual structures containing varying degrees 
and types of structural regularity are used for the 
computations. 

The question arises concerning what value to give an 
invariant for which an acceptable value has been 
calculated. It could be assigned the magnitude of unity 
with the computed sign attached, or, perhaps, a 
worthwhile improvement in accuracy would derive 
from assigning a magnitude somewhat less than unity, 
based on the magnitude of I E h ,  Eh2 Eh, Eh, I. Depending 
upon the application, values of _+ 1 may be the more 
convenient to use. 

The same quartets that were computed for rows 1 
and 2 in Table 2 for 20 atoms were computed by use of 
the special formula (1) in which S 4 was set equal to 
unity. In formula (1) for quartets there are, at most, 
three different factors of the type (I Eh, + h~] 2 _ 1) and an 
acceptance criterion can be based on their value. If it is 
required that all three such factors have I EI > 1.3 and 
two have I~EI > 1.8, two of the 12 quartets having large 
positive cosines are so acceptable. To accept a quartet 
as having a cosine of large negative value, it is re- 
quired that the three factors (IEh,+h,I 2 -- 1) have 
IEI < 0.7 and two have IEI < 0.5. None of the 
quartets having cosines of large negative value that 
occur in the first row of Table 2 have calculations with 
formula (I) that are acceptable. In fact, even the single 
requirement that two factors have I EI < 0.5 is not 
satisfied. The only acceptances that could be made were 
those for cosines of large positive value. So far as the 
quartets used in the calculations of row 2 in Table 2 by 
use of formula (2) are concerned, application of the 
acceptance criteria to calculations of the same quartets 
with formula (1) led to the acceptance of only one as a 
quartet with a large positive value. It is possible to 
conclude that if the acceptance criteria are reasonable, 
for the 20 atom structure considered here, the general 
formula (2) applied to quartets provides more calcu- 
lations that are acceptable than does the special 
formula (1). A simplification of special formula (1) can 
be made in applications where all the I EI values 
associated with the invariant being computed are large 
and roughly of the same value. In that case the first and 
last factors in the terms contributing to the averages in 
formula (1) can be omitted, since they are always 
comprised of the I EI associated with the invariant of 
interest. 

Quintet invariants 

Some of the characteristics of formulas (1) and (2) 
applied to the calculation of quintet phase invariants 
will now be considered, although examples of such 
calculations will not be presented here. For the special 
formula (I) applied to quintets, there will be four 
factors in a term in the average. There should be, if all 
terms in the average can be formed from the available 
data set, 60 different terms contributing to the average 
(since the number of distinct terms is n!/2, where n = 5 
for the quintet). The latter are obtained by including 
only terms in the averages of (1) that satisfy i < m, 
where m is defined by h i + hj + h k + h t = - h  m. 

In the application of formula (2) to quintet in- 
variants, there are n! = 5! contributing terms to the 
average for each k. One way to perform the com- 
putations is to permit k to range through the complete 
data set including Friedel mates. Under this circum- 
stance, there are only 12 distinct sets of values for i ,j ,  k 
and I. The subscripts for the five factors in (2) may be 
selected as follows: 

k h I +  k h I +  h 2+ k hj + h 2+ h 3+ k h l + h  2 + h 3 + h  4+  k 
k h~ + k h~ + h 2+ k h I + h 2+  h 3 + k  h I + h 2+  h 3+ h 5 + k 
k h I + k hj + h 2 + k h I + h 2 + h 4 + k h I + h 2 + h 4 + h~ + k 
k h i + k hj + h 2 + k h I + h 2 + h 4 + k h~ + h 2 + h 4 + h 5 + k 
k h~+ k hj + h 2+ k h~ + h 2+ h s +  k h I + h~+ h~+ h 3+ k 
k h t + k h I +  h 2+ k h l +  h 2+ h 5+ k h I + h 2 + h 5 + h 4 + k 
k h i + k  h I +  h~+ k h 1+ h 3+ h 2 + k  h I + h  3+ h 2+ h 4 + k  ( 7 )  
k h 1+ k h I +  h 3+ k h I +  h 3+ h 2+ k h ~ + h  3+ h 2+ h s +  k 
k h I + k hj + h 3 + k h I + h 3 + h 4 + k h I + h 3 + h 4 + h 2 + k 
k h l + k  h ~ + h 3 + k  h l + h 3 + h ~  + k  h l + h 3 + h s + h 2  + k  
k h I + k h I + h 4 + k h I + h 4 + h 2 + k h I + h 4 4- h 2 + h 3 + k 
k h I + k h I + h I + k h I + h 4 + h 3 + k hj + h 4 + h 3 + h 2 + k. 

It is conjectured that, in general, the number of distinct 
sets of values for the subscripts i, j ,  k . . . .  , v, when k is 
permitted to range through the complete data set is 
(n - 1)!/2, where n is the order of the n-tet. 

Embedded  seminvariants  

Seminvariant phases or sums of phases are 
associated with planes of reflection that have specific 
mathematical characteristics for their reciprocal vectors 
that depend upon the space group and other features 
such as the trigonometric form of the structure factor. 
The characteristics of the reciprocal vectors are defined 
in terms of seminvariant vectors which have been 
identified for centrosymmetric crystals (Hauptman & 
Karle, 1953, 1959) and for noncentrosymmetric crys- 
tals (Hauptman & Karle, 1956; Karle & Hauptman, 
1961b). These results have been summarized (Karle, 
1974; see also Lessinger & Wondratschek, 1975 and 
H6vmoller, 1978). 

Invariants can often be composed of the sum of two 
or more seminvariants. A seminvariant contained 
within an invariant is called an embedded seminvariant. 
The virtue of considering embedded seminvariants 
derives from the fact that there may be the possibility of 
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computing a value for it in many alternative ways that 
might enhance the reliability of the determined value. 
The concept of an embedded seminvariant dates back 
to the B3. 0 formula for the computation of triplet 
phase invariants (Hauptman & Karle, 1958; Karle & 
Hauptman, 1958), although the specific terminology is 
more recent (Hauptman, 1978). In fact, embedded 
seminvariants are contained in the inequalities and the 
~"1 and •3 formulas (Hauptman & Karle, 1953), for 
example. The triplet invariants provide simple illus- 
trations of the concepts involved. 

A technique suitable for triplet invariants is to choose 
two phases that are related by space-group symmetry in 
such a way that, although their individual values may 
not be known, the sum of their phases would be a 
known value. These two phases would form a semin- 
variant and, therefore, the third phase in the triplet 
invariant, whose indices cancel the sum of the other 
two, is also a seminvariant. For example, in space 
group P2~ (b axis unique), the sum of two phases given 
by ~0hk ~ + ~0hk2 is equal to zero or n, depending upon the 
parities of the indices which are known. The third phase 
is ~02h,0,2~, a semivariant phase. The computation of the 
value of the cosine of the triplet invariant is immedi- 
ately interpretable in terms of the value of cos ~02h,0,2t 
since the value of the sum of the other two phases is 
zero or n. A matter of particular interest is the fact that 
for a specific ~02h,o,2t there are several possible com- 
binations of ~0~k 7 + ~ since the value of k can vary. 
The details for applying the formula for triplet 
invariants to the calculation of seminvariant phases in 
all centrosymmetric space groups has been published in 
a series of papers in Acta Crystallographica [starting 
with Karle & Hauptman (1959), and concluding with 
Karle & Hauptman (1961a)]. Similar relations are 
readily determined for noncentrosymmetric space 
groups. In general, an invariant is decomposed into 
desired seminvariants in such a way that information is 
available for one part and thus the evaluation of the 
invariant permits the evaluation of the remaining 
seminvariant part. Formulas (1) and (2) can be used 
generally for such purposes in all the space groups. 
Examples of recent theoretical investigations of embed- 
ded seminvariants in the context of conditional distri- 
butions may be seen for the three-phase structure 
seminvariant in P i  (Hauptman, 1980) and for one- 
phase structure seminvariants in space groups up to 
orthorhombic (Giacovazzo, 1980b). 

Concluding remarks 

Expected value formulas for phase invariants and 
embedded seminvariants of all orders and for all space 
groups have been obtained from use of determinantal 
probability distributions. It has been seen in rather 
limited calculations with triplet and quartet invariants 

that the reliability of the calculations decreases rapidly 
with complexity. The question arises concerning prac- 
tical expectations for the structures that are now 
regarded as difficult. These usually occur among 
noncentrosymmetric, essentially equal-atom structures 
with 100 or more atoms in the asymmetric unit. The 
suggestion has already been made by workers with 
conditional joint probability distributions that thou- 
sands of computations should be made and only a small 
number of the most reliable ones be accepted. How 
extensive must the calculations be? How much infor- 
mation would be so gleaned and how useful would it 
be? In comparison with current calculations in struc- 
ture determination, they would probably be some 
orders of magnitude more extensive. How much 
information would thus become available remains to be 
seen. 

Focusing the calculations on the embedded semin- 
variants has been shown to have advantages because 
there are often many different ways to evaluate the 
same invariant and also at times the need arises only to 
distinguish between a limited number of quite different 
values such as zero or 7r. 

It has been pointed out, in connection with formulas 
(1) and (2), that the number of contributing terms to the 
formulas increases factorially with the order of the 
invariant. This raises the question for the future of 
whether, in a finite data set, it is possible to provide 
such an increase in contributors or whether most of the 
increase is lost because needed factors occur beyond 
the measured range. There is also a great increase in the 
number of phase invariants, as the order of the 
invariant increases, whose cosines can be calculated. 
This also plays a role in extending the magnitude of the 
calculations. 

The calculations in this paper were based on atomic 
arrangements whose coordinates were found from a 
random number generator. It is possible that formulas 
(1) and (2) might show a great variation in the nature of 
the results with actual crystal data depending upon the 
regularities in the structures and the possibility of 
having special subsets of normalized structure factors 
of large magnitude. 

No general study has been made comparing the 
usefulness of the expected value formulas (1) and (2) in 
this paper with corresponding conditional probability 
formulas. It was pointed out that, for the quartet, quite 
comparable results would be obtained from both types 
of formula, the expected value and the conditional joint 
probability distribution. It was also pointed out that the 
same terms as occur in the conditional distributions 
that have been published for some of the more 
elementary space groups also occur in the expected 
value formulas, mainly the special formula. The 
conditional joint probability distributions could be 
obtained in a step in the derivation that precedes the 
obtaining of the expected value formulas. If it should 
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turn out that the conditional distributions have some 
advantages, they could be derived from the determi- 
nantal joint probability distributions. However, they 
would be rather more complicated than the expected 
value formulas of this paper and, because of this, I 
believe that the expected value formulas might well be 
tried first. 

My thanks to Stephen A. Brenner who developed the 
programs and made the calculations for this paper. 
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Abstract 

Radial distribution analysis studies by X-ray diffrac- 
tion of carbon blacks obtained by pyrolysis of benzene 
C6H 6, toluene, C7H8, and sucrose, C12H22011 , and 
samples of ultracarbon of the medicinal variety have 
been carried out. Bonding distances, coordination 
numbers and the layer dimensions have been deter- 
mined. It has been observed that the carbon blacks 
have turbostratic structures. The C - C  distances in the 
carbon layers lie in the range of that for aromatic rings 
and double bonds. Ultracarbon has the C - C  bonding 
distance corresponding to graphite. 

1. Introduction 

Because of their increasing uses, various allotropic 
modifications of carbon are being investigated more 

0567-7394/82/030333-04501.00 

and more regarding their structure-property relations. 
Atomic arrangements in carbon in its various forms - 
especially the amorphous forms - are becoming more 
and more fascinating to study. 

X-ray diffraction patterns of all types of amorphous 
carbons have one feature in common: they all have two 
broad peaks in the approximate neighbourhood of 
diffraction angles corresponding to 002 and 100 peaks 
of graphite. This led early workers like Asahara (1922), 
Mahadevan (1929), Blayden, Gibson & Riley (1944), 
Siever (1952), Mitra (1953), Nelson (1954) and Hirsch 
(1954) to assume that amorphous carbon consisted of 
very small particles of graphite so disordered that only 
the 002 and 100 reflections remained intact while other 
peaks cancelled out. Some additional peaks were 
observed by some of these workers, but the model 
essentially remained the same. 
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